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In this study, we describe the problem of testing for the stability and 

persistence of the Phillips curve for Nigeria when there are 

nonstationarities in the marginal distribution of the regressors.  We test 

for unknown break dates using the 𝑆𝑢𝑝𝐹, 𝐴𝑣𝑔𝐹  and 𝐸𝑥𝑝𝐹 

approaches. After reviewing the relevant asymptotic distribution theory 

we replicate Hansen’s fixed-regressor bootstraping scheme, which 

shows that Andrews’ tabulated critical values for the test statistics are 

oversized, and are not robust to the presence of nonstationarities in the 

marginal distribution of the regressors. In search of alternative 

bootstraping schemes, we experiment with the sieve, wild, and 

Rademacher schemes to ascertain if there are any possible 

improvements over the fixed-regressor scheme. Finally, we apply the 

methodology to test the stability and persistence of the Phillips curve in 

Nigeria using quarterly data on inflation and the output gap from 1960 

to 2009. We find that, unlike Andrews asymptotic p-values, inference 

based on Hansen’s hetero-corrected bootstrap technique supports the 

hypothesis of a structural break in the inflation dynamics in Nigeria. 

One key policy implication is that, within a certain range of the output 

gap, the central bank could use the policy rate to stimulate demand up to 

a certain limit with no consequential positive impact on inflation.   
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1.0  Introduction 

The Phillips curve emerged from empirical studies analysing the 

relationship between the unemployment rate and the inflation rate in 

search of a tool for macroeconomic forecasting and effective 

implementation of monetary policy (see Sergo et al., 2012). The 

traditional Phillips curve postulates that there is a trade-off, or negative 

relationship, between unemployment and inflation. Since the original 

UK wage behaviour study by Phillips (1958), a lot of criticisms have led 

                                                 
1
 Corresponding Author: Department of Economics, University of Manchester, 

Manchester, U.K. chukuachuku@gmail.com; chuku.chuku@manchester.ac.uk, +447776604518  
2
 Department of Economics, University of Uyo, Uyo, Nigeria.  

3 
Department of Economics, University of Lagos, Lagos, Nigeria felixobioesio@yahoo.com 

mailto:chukuachuku@gmail.com
mailto:chuku.chuku@manchester.ac.uk
mailto:felixobioesio@yahoo.com


124      Testing for the Stability and Persistence of the Phillips Curve for Nigeria 

                              Chuku, Atan and Obioesio 

 

to refinements in the Phillips curve. In addition to problems related to 

the absence of rational expectations in the original Phillips curve, 

another major concern is that they are usually estimated under the 

assumption of linearity and parameter constancy. 

But in an influential paper, Lucas (1976) criticised the use of 

backward-looking reduced form econometric models for policy 

evaluation because they assumed parameter constancy, and hence could 

not account for the potential changes that economic agents make when 

policies change. The issue is that the changing decisions of rational 

economic agents could lead to many types of model uncertainty, 

especially in the parameters of the model. Following the Lucas critique 

and the large body of empirical macroeconomic evidence that reveal 

parameter instability in most macroeconomic and financial models (see 

Boldea & Hall, 2013; Stock & Watson, 1996, for a review of this 

literature), it is now imperative that applied econometricians conduct 

structural stability diagnostics on macroeconomic and financial models 

as a precursor to further modelling of relationships. 

The objective of this study is threefold. First is to examine the size and 

power properties of  Andrews’ tabulated critical values for the SupF, 

AvgF, and ExpF statistics when there is nonstationarity in the marginal 

distribution of the regressors. Second is to execute Hansen’s 

fixed-regressor bootstrapping solution to this problem and conduct 

experiments using Monte Carlo simulations with other bootstrapping 

techniques to ascertain if there are any gains from using alternative 

bootstrapping schemes to solve the problem of stationarity in the 

regressors. The third is to apply the appropriate technique to accurately 

test the stability of the Phillips curve in Nigeria, which may have been 

affected by changes in the international price of oil, regime changes in 

monetary policy, changes in fiscal and debt management policies, 

foreign exchange speculative bubbles among other factors.  

This study focuses on tests based on the F-statistic because of the 

important advantage they have over fluctuation based tests such as the 

CUSUM. In particular, using an F-statistic based test, the alternative 

hypothesis is specified, plus it is able to test for single and/or multiple 

structural changes; whereas, general fluctuation based tests are only 

suitable for testing for the pattern of structural change. The Chow test is 

a test of the constancy in the parameters of two linear regression models 
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when the researcher has apriori information about the date of a structural 

change. The problem, however, is that in many applied cases, the 

researcher is not aware of the timing of possible breakpoints in the 

model. A better option will be to approach the structural break problem 

agnostically. This agnostic approach was the motivation behind the study 

by Andrews (1993) and Andrews and Ploberger (1994) who build on 

Quandt’s (1960) methodology to operationalize the Chow (1960) test 

and make it applicable for testing in environments where the breakpoint 

is unknown using three different, but closely related test statistics: the 

supremum F (SupF), average F (AvgF), and exponentially weighted F 

(ExpF) tests. 

The hypothesis of structural change test is constructed in a manner that 

the change point only appears under the alternative and hence, it can 

only be characterised by non-standard asymptotic distributions. Andrews 

(1993) shows that the asymptotic null distribution is given as the 

supremum of the square of a standardised tied-down Bessel process of 

order 𝑝 ≥ 1 and provides the table of critical values that was latter 

revised in a corrigendum to the original study (see Andrews, 2003)
3
. The 

limitation of Andrews’ (1993) critical values is that they were derived 

based on asymptotic distribution theory which assumes that the 

conditioning variables are stationary. This is, however, not the case in 

many applied time series models. In a standard linear regression model, 

the test of structural change is necessarily a test of change in the 

parameters and conditional distribution of the model, and not in the 

marginal distribution or stationarity properties of the regressors. Hence, 

for inference using the asymptotic critical values from Andrews’ (1993) 

table to be valid, it should be robust enough to discriminate between 

structural change in the conditional distribution and structural change in 

the marginal distribution of the regressors. 

The rest of the paper is organised as follows. In Section 2, we present 

Hansen’s solution method for testing for structural change when the 

break date is unknown, specifically describing the fixed-regressor 

bootstrap technique and the homoscedastic-regressor bootstrap 

technique. In Section 3, we conduct additional experiments and 

                                                 
3 Note that some of the critical values provided in Andrews (1993) were later discovered to be incorrect, 

hence, the corrected table was published in a latter paper in Andrews (2003) which was derived by using 

100,000 simulations as against the 10,000 simulations used in the Andrews, 1993 paper. It is also important 
to note that there is a recent study which uses numerical methods to compute the critical asymptotic values.  
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replication exercises of recently developed bootstrapping techniques. 

Section 4 presents the empirical application, describing the model and 

data used. Section 5 presents and discusses the results from the empirical 

application, and Section 6 concludes.  

2.0  Literature review 

2.1  Theoretical Framework 

Generally, structural change tests are based on three different 

methodologies: (i) fluctuation based tests, for examples CUSUM and 

MOSUM tests (see Kuan & Hornik, 1995; Nyblom, 1989); (ii) 

F-statistics based tests, for examples, Chow, 𝑆𝑢𝑝𝐹, 𝐴𝑣𝑔𝐹, and 𝐸𝑥𝑝𝐹 

tests (see Chow, 1960; Quandt, 1960),  and  tests based on 

approximations of the unknown functional form of the data generating 

process (DGP) using trigonometric and Fourier analysis (see, for 

examples, Becker, Enders, and Hurn, 2004
4
; Enders and Lee , 2012). 

Hansen (2000) argues that the ability of F-statistics based tests, such as 

Andrew’s 𝑆𝑢𝑝𝐹, 𝐴𝑣𝑔𝐹 , and 𝐸𝑥𝑝𝐹  tests, to discriminate between 

structural change in the conditional distribution and structural change in 

the marginal distribution of the regressors is weakened if the null 

distribution is affected by a structural change in the regressors. More 

precisely, if there is a structural change in the marginal distribution, the 

researcher will be faced with the problem of identification. That is, a 

significant test statistic could indicate that there is a structural change in 

either the parameters (conditional distribution) or the regressors 

(marginal distribution). This could further affect the distribution under 

the alternative and hence will lead to compromised power and size 

distortions. Hansen (2000) formalises his arguments by using first-order 

asymptotic stationarity and nonstationarity properties to show the 

differences in the distributions. To solve this problem, Hansen (2000) 

introduces the “fixed regressor bootstrap" which achieves the first-order 

asymptotic distribution and possesses reasonable size properties in small 

samples. 

The Andrews test is primarily designed to test for a single structural 

break, thereby ignoring the possibility that multiple breaks may exist. 

                                                 
4 The testing approach presented in Becker et al. (2004) tagged the “Trig-Test" is based on applying a 

trigonometric expansion to approximate the unknown functional form of a time varying regression model. 

Although the test is relatively more involved than standard testing approaches in the literature it particularly 
performs better in terms of power when there is stochastic variation in the parameter. 
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Bai (1997) develops a subsampling procedure utilising the SupF statistic 

that is designed to detect and locate multiple structural breaks in a 

regression model. The Bai (1997) subsample methodology, proceeds as 

follows. First, test for a structural break using the SupF statistic and the 

fixed-regressor bootstrap for the full sample of data. Check if there is 

significant evidence of a structural break over the full sample following 

the SupF statistic and the fixed-regressor bootstrap, then calculate the 

SupF statistic for each of the two subsamples defined by the full-sample 

breakpoint. If no evidence is found for structural break using the SupF 

statistic and fixed-regressor bootstrap for each of the two subsamples, 

conclude that there is a single break (see Rapach and Wohar, 2006). 

In applying this methodology to simulation data, Wright (1996) and 

Viceira (1997) show that the asymptotic distribution of the SupF statistic 

differs from the asymptotic distribution in Andrews (1993) when a 

regressor is nearly integrated, which is based on a specification that 

assumes that the regressors have a root that is local-to-unity. 

2.2  Empirical literature 

Most empirical applications of structural change tests in 

macroeconomics have been in the area of testing for the stability and 

persistence of the Philips curve. In particular, various forms of instability 

have been documented for most advanced economies, including 

structural change in the mean, persistence, and volatility of inflation 

dynamics. In a closely related paper, Demers (2003) test for the 

existence of the Phillips curve and its structural break by investigating 

the linearity and constancy assumptions of a standard reduced-form 

Phillips curve for Canada using two different techniques: the 

methodology proposed by Bai and Perron (1998), which allows for an 

unknown number of breaks at unknown dates, and a three-regimes 

Markov-switching regression model. Their results strongly reject the 

linearity and parameter constancy assumptions.  

In a recent paper, Orji et al. (2015) examine the  inflation 

unemployment nexus in Nigeria by testing if the original Phillips curve 

holds for Nigeria using a distributed lag model with data covering the 

period 1970-2011. Their finding invalidates the Phillips curve existence 

in Nigeria. The problem, however, is that because they have not 

accounted for structural breaks in their analysis, it is possible that their 



128      Testing for the Stability and Persistence of the Phillips Curve for Nigeria 

                              Chuku, Atan and Obioesio 

 

results mask important dynamics in the relationship. While it is 

important to account for possible instabilities, especially in line with the 

Lucas critique, it is questionable whether the most appropriate way to 

detect and model instability is via structural break tests that assumed a 

known date for the break. Unfortunately, there are hardly any studies on 

the Phillips curve in Nigeria that specifically account for unknown 

structural break dates. This is the aspect of the literature that our paper 

seeks to fill an important gap. 

3.0  Methodology 

Hansen’s Solution to Testing for Structural Change 

As earlier noted, the derivation of the test statistics and critical values in 

Andrews (1993) is based on the assumption of stationarity in the 

regressors. As a result, the test is not robust enough to distinguish 

between structural change in the conditional distribution versus 

structural change in the marginal distribution. Hansen (2000) attempts to 

solve the problem that this assumption creates when using Andrews 

tabulated asymptotic values for inference by presenting the so-called 

“fixed regressor bootstrap" scheme, which is relatively robust to 

different forms of structural change in the marginal distribution. 

Hansen’s (2000) methodology and solution technique are summarised as 

follows. 

Given a linear regression model in array notation of the form; 

𝑦𝑛𝑖 = 𝑥𝑛𝑖
′ 𝛽𝑛𝑖 + 𝑒𝑛𝑖,        𝑖 = 1, … , 𝑛. (1) 

Structural change in the conditional distribution {𝑦𝑛𝑖} arises through the 

coefficient 𝛽𝑛𝑖 which takes the form, 

𝛽𝑛𝑖 = {
𝛽,         𝑖 < 𝑡0

𝛽 + 𝜃𝑛,         𝑖 ≥ 𝑡0
, (2) 

where 𝑡0 ∈ [𝑡1, 𝑡2] is an index of the possible unknown breakpoint and 

𝜃𝑛  is the magnitude of the structural shift. The null hypothesis of 

interest is that ℍ0: 𝜃𝑛 = 0 ; against ℍ1: 𝜃𝑛 ≠ 0 . The maintained 

assumption for the error term in the model is that of weak independence.  

That is:  

Assumption  The error term 𝑒𝑛𝑖 is martingale difference:
5
 

                                                 
5 A martingale difference sequence is a stochastic series which has an expectation of zero with respect to past 
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𝔼(𝑒𝑛𝑖|ℱ𝑛𝑖−1) = 0. Where ℱ𝑛𝑖−1 is the sigma-field generated by current 

values of 𝑥𝑛𝑖 and lagged values (𝑥𝑛𝑖 , 𝑒𝑛𝑖)  

Under the null hypothesis of no structural change, we estimate Equation 

(1) and denote the results from the OLS estimation as 𝛽̂, 𝑒̂  and 

𝜎̂2 = (𝑛 − 𝑚)−1 ∑  𝑛
𝑖=1 𝑒̂𝑖 ; whereas, under the alternative, ℍ1: 𝜃𝑛 ≠ 0, 

we estimate the model of the form:  

𝑦𝑛𝑖 = 𝑥𝑛𝑖
′ 𝛽 + 𝑥𝑛𝑖

′ 𝜃𝑛𝐼(𝑖 ≥ 𝑡0) + 𝑒𝑛𝑖,        𝑖 = 1, … , 𝑛. (3) 

where 𝐼 is an indicator variable and 𝑚 is the number of parameters to 

be estimated. For any given breakpoint in the range 𝑡0 ∈ [𝑡1, 𝑡2], Eq. (3) 

can be estimated by OLS to yield estimates (𝛽̂𝑡, 𝜃𝑡), residuals 𝑒̂𝑖𝑡, and 

variance 𝜎̂𝑡
2 = (𝑛 − 2𝑚)−1 ∑  𝑛

𝑖=1 𝑒̂2
𝑖𝑡; where 𝑛 is the sample size and 

𝑚  is the number of parameters to be estimated. Further, let 𝑇̂ =

𝑎𝑟𝑔𝑚𝑖𝑛 𝜎̂𝑡
2 denote the least squares estimate of the break date and set 

𝛽 = 𝛽̂𝑡̂ and 𝑒̃𝑖 = 𝑒̂𝑖𝑡̂. 

The test for ℍ0: 𝜃𝑛 = 0  against ℍ1: 𝜃𝑛 ≠ 0  for known 𝑡0  is 

given by the Wald statistic according to Chow (1960). 

 𝐹𝑡 =
(𝑛−𝑚)𝜎̂2−(𝑛−2𝑚)𝜎̂𝑡

2

𝜎̂𝑡
2   (4) 

However, when the true break date is unknown, Quandt (1960) proposes 

the likelihood ratio test, which is equivalent to 𝑆𝑢𝑝𝐹𝑛 = 𝑠𝑢𝑝𝑡𝐹𝑡, where 

the supremum is taken over all possible breakdates defined by 

𝑡0 = [𝑡1, 𝑡2]. Andrews and Ploberger (1994) suggest a family of related 

tests including the exponentially weighted Wald statistic, given as 

𝐸𝑥𝑝𝐹𝑛 = ln ∫  𝑒𝑥𝑝(𝐹𝑡/2)𝑑𝜔(𝑡), and the average Wald statistic, given as 

𝐴𝑣𝑔𝐹𝑛 = ∫  
𝑡2

𝑡1
𝐹𝑡𝑑𝜔(𝑡). Where 𝜔  is a weighting parameter given as 

1/(𝑡1 + 𝑡2). 

The distribution theory used in Andrews (1993) and Andrews and 

Ploberger (1994) to derive the 𝑆𝑢𝑝𝐹𝑛, 𝐸𝑥𝑝𝐹𝑛 , and 𝐴𝑣𝑔𝐹𝑛  assumes 

mse-stationarity in the data which implies asymptotic constancy in the 

second moments and that the second moments of the accumulated data 

grows linearly. Hansen (2000) considers the consequences of violating 

                                                                                                                       
values., so that 𝔼(𝑋𝑡) < ∞ and 𝔼(𝑋𝑛𝑖|ℱ𝑡−1) = 0 almost surely (a.s). 
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the mse-stationarity assumption, showing that if linearity in the growth 

of the second moments are violated, the process characterizing the 

distribution of the regressors and error terms will not be a Brownian 

bridge; and therefore, will not be equal to the square tied-down Bessell 

process used in Andrews derivations. Typical examples of regressor 

processes with non-linearities in the growth of the second moment 

include regressors with linear trend, variance trend, or stochastic trend. 

The implication is that the asymptotic distribution of the 𝑠𝑢𝑝𝐹𝑡 statistic 

when mse-stationarity is violated is not the same as the distribution 

tabulated in Andrews (1993) and Andrews (2003). 

Hansen shows that when there is a structural break in the marginal 

distribution, the appropriate measure of ‘spread’ should be 𝜆∗ = 𝜋2
∗(1 −

𝜋1
∗)/[𝜋1

∗(1 − 𝜋2
∗)]  and not the one found in Andrews’ distribution 

theorem given as 𝜆 = 𝜋2(1 − 𝜋1)/[𝜋1(1 − 𝜋2)]. The difference arising 

from the linearity of the implicit measure in the definition of 𝜆 for 

stationary processes that should be non-linear in the case of 

non-stationary processes.
6

 Because the critical values for 𝑠𝑢𝑝𝐹𝑛 

statistic tabulated by Andrews is increasing in 𝜆, it therefore  implies 

that if 𝜆∗ > 𝜆, then the 𝑠𝑢𝑝𝐹𝑛 statistic according to Andrews table will 

tend to reject the null too frequently, consequemtly making the test 

oversized.  Similarly, if 𝜆∗ < 𝜆 , the test will tend to reject too 

infrequently, thereby reducing the power of the test. Hansen uses 

simulation analysis to show that power and size suffer when the 

Andrews tabulated values are used for inference in situations where there 

is structural change in the marginal distribution of the regressors. What 

is the solution then? Hansen offers the so-called “fixed regressor 

bootstrap" scheme considered in the following section. 

Though the Andrews test is primarily designed to test for a single 

structural break, recent studies have built on the foundations of Andrews 

test to develop tests for multiple structural breaks. In particular, Bai 

(1997), and Bai and Perron (1998, 2003, 2004) develop a subsampling 

procedure to detect and locate multiple structural breaks in a regression 

model using the SupF statistic. Their approach explicitly treats the 

breakpoints as unknown, and estimates several predetermined partitions 

of the model by the least-squares method, minimising the sum of squared 

                                                 
6 The factor 𝑟 which is implicitly defined to be linear in 𝜆 in Andrews distribution theorem should be 

non-linear 𝑣(𝑟) when there is any form of structural change in the marginal distribution. This non-linear 
measure reflects the actual measure of accumulation of sample information 
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residuals. Recently, more robust strategies for multiple structural break 

tests are being developed. For example, Perron and Yamamoto (2015) 

develop a multiple structural break test statistic that is appropriate when 

the regressors are endogenous and use it to provide evidence on the 

stability of the Phillips curve for the U.S. In a related study, Bai and Han 

(2016) provide a comprehensive review of multiple structural change 

tests in high-dimensional factor models.    

3.1  The fixed-regressor bootstrap 

Given that the presence of structural breaks in the marginal distribution 

affects the asymptotic distribution of the test statistics presented by 

Andrews (1993) and Andrews and Ploberger (1994), an alternative 

approach to conduct inference is to consider a bootstrap distribution. 

Although it is not obvious from theory and apriori which bootstrap 

technique will work right, Hansen (2000) successfully employs what he 

calls the “Fixed Regressor Bootstrap" to achieve ‘powerful’ and 

‘correctly sized’ inference when there is structural change in the 

marginal distribution of a conditional model. 

The fixed regressor bootstrap scheme treats the regressors 𝑥𝑛𝑖  as 

though they were fixed and exogenous, even when they contain lagged 

dependent variables. Hansen, unlike other studies, uses simulation and 

theoretical evidence to show that the bootstrap scheme replicates the 

first-order asymptotic distribution, but does not replicate the finite small 

sample distribution of the test statistic. Theorem 5 and Corollary 1 in 

Hansen’s paper, which are reproduced in the Appendix, ensures that the 

bootstrap replication converges to the null distribution in probability. 

Depending on the characteristics of the error terms in the model, there 

are two forms of the fixed regressor bootstrap scheme: the 

‘homoscedastic fixed-regressor bootstrap’, appropriate when one has 

homoscedastic and iid error terms; and the ‘heteroscedastic 

fixed-regressor bootstrap’, appropriate when the error terms are 

heteroscedastic—a more likely scenario in applied econometric studies. 

3.2  Homoscedastic fixed-regressor bootstrap 

For the homoscedastic bootstrap, the dependent variable, 𝑦𝑛𝑖(𝑏), is 

obtained by drawing random samples from the normal distribution which 

are then used to estimate the regression under the null i.e., regress 
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𝑦𝑛𝑖(𝑏) on 𝑥𝑛𝑖 and obtain the variance 𝜎̂2(𝑏).
7
 Secondly, estimate the 

model under the alternative of structural change i.e., regress 𝑦𝑛𝑖(𝑏) on 

𝑥𝑛𝑖 and 𝑥𝑛𝑖𝐼(𝑖 ≤ 𝑡) to get the variance 𝜎̂𝑡
2(𝑏) and Wald statistic  

𝐹𝑡(𝑏) =
(𝑛−𝑚)𝜎̂2(𝑏)−(𝑛−2𝑚)𝜎̂𝑡

2(𝑏)

𝜎̂𝑡
2(𝑏)

, (5) 

where the bootstrap test statistic is the supremum over the range of 

breakpoints 𝑆𝑢𝑝𝐹𝑛(𝑏) = 𝑠𝑢𝑝𝑡1≤𝑡≤𝑡2
𝐹𝑡(𝑏). The bootstrap p-values are 

obtained in the usual manner, thus:  

𝑝 =
1

𝐵
∑  𝐵

𝑛𝑏=1 𝐼(𝑆𝑢𝑝𝐹𝑡
∗(𝑏) > 𝑆𝑢𝑝𝐹𝑡) (6) 

where 𝐵 is the number of bootstrap replications and 𝐹𝑡 is the Wald 

statistic obtained by using the empirical data.  

3.3  Heteroscedastic fixed-regressor bootstrap 

The heteroscedastic bootstrap scheme is much similar to the 

homoscedastic case, the only difference being the manner in which the 

𝑦𝑛𝑖
ℎ  variable is generated. Using this scheme, 𝑦𝑛𝑖

ℎ = 𝑢𝑖(𝑏)𝑒̃𝑖  where 

𝑢𝑖(𝑏)~𝑁(0,1) and 𝑒̃𝑖 is the residual from the regression that identifies 

the breakdate, i.e., residuals from the regression that defines 𝑇̂ =

𝑎𝑟𝑔𝑚𝑖𝑛 𝜎̂𝑡
2 . After obtaining the 𝑦𝑛𝑖

ℎ  variable, the boostrap scheme 

follows the construction described in the homoscedastic case above. 

4.0  Additional experiments and replication exercise  

From the bootstrapping literature, it is not clear apriori which bootstrap 

technique will work in the context of non-stationary variables and given 

the weaknesses of Hansen’s fixed regressor bootstrap technique for 

certain regressor models (to be discussed later), we conduct additional 

experiments with three alternative bootstrap schemes to check if there 

are any significant improvements in their performance over Hansen’s 

technique for different models of the regressor. 

4.1 The sieve bootstrap 

Although Hansen’s scheme accommodates models with autoregressive 

                                                 
7 Hansen also suggests that an alternative will be to draw random samples from the empirical distribution of 
the residuals. 
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regressions, the simulations are limited to a situation where the 

autoregression coefficient 𝜌 = 0.5. The question is: what happens to 

Hansen’s scheme if 𝜌 takes on a higher or lower value? This question is 

just as important as the case of the presence of structural change in the 

marginal distribution because Diebold and Chen (1996) have shown that 

the tabulated critical values of Andrews (1993) suffers from size 

problems as the value of 𝜌 increases. They present the so-called “sieve 

bootstrap" scheme. Following this observation, we augment Hansen’s 

analysis by testing to see if the seive bootstrap scheme outperforms the 

fixed-regressor bootstrap scheme when 𝜌 = 0.5 . The results are 

presented in Table 1. We find that, apart from the regressor model with 

mean break and homoscedastic errors, the fixed-regressor bootstrap 

scheme outperforms the sieve bootstrap scheme in terms of size when 

𝜌 = 0.5. This is, however, not the case when we experiment with 

𝜌 = [0.7,0.8,0.9].8 

The sieve bootstrap procedure involves estimating the no-break (null) 

model with the empirical or simulated data, and the residuals and the 

DGP derived from this estimation are used to generate 𝐵 different 

samples of 𝑦(𝑏)𝑡
∗𝑠𝑖𝑒𝑣𝑒 thus;  

𝑦(𝑏)𝑡
∗𝑠𝑖𝑒𝑣𝑒 = 𝑋𝑡𝛽̂ + 𝜇̂𝑡 (7) 

where 𝛽̂ are the estimated coefficients from the no-break model and 𝜇 

are random samples drawn from the estimated residuals of the no-break 

regression 𝜀̂ . For each 𝑛𝑏 = 1, … 𝐵  sample, the 𝑠𝑢𝑝𝐹  statistic is 

computed and the bootstrap p-values are obtained as in Eq. 6. 

4.2  Wild and Rademacher bootstraps 

In the bootstrapping literature, it is known that heteroscedasticity of 

unknown form in the null hypothesis cannot easily be imitated in the 

bootstrap DGP. Perhaps this is the reason why the fixed regressor 

bootstrap scheme of Hansen does not adequately correct the size 

distribution in the 𝑠𝑢𝑝𝐹 test when the regressors have mean break, 

variance break, stochastic mean and stochastic variance (see Table 1). In 

a more recent study, Davidson and Flachaire (2008) show that a special 

form of the Wild bootstrap scheme could produce perfect bootstrap 

inference when there is heteroscedasticity of unknown form in the DGP. 

                                                 
8 Additional results are available upon request 
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This motivates us to perform two variants, the ‘Wild’ and ‘Rademacher’ 

bootstrap schemes on different regressor models to see if any 

improvement is achieved over the fixed regressor bootstrap scheme 

when there is heteroscedasticity of unknown form in the model. This 

approach uses a bootstrap DGP of the following form.  

𝑦(𝑏)𝑡
∗𝑤𝑖𝑙𝑑 = 𝑋𝑡𝛽̂ + 𝑓𝑡(𝜇𝑡

∗), (8) 

where 𝛽̂ are the coefficients from the no-break regression and 𝑓𝑡(𝜇𝑡
∗) 

is a transformation of the residuals from the no-break regression which 

takes the from 𝑓𝑡(𝜇𝑡
∗) = (𝜀𝑡̂ ∗ 𝜇𝑡), where 𝜇𝑡 are random draws from a 

distribution that satisfies the following three conditions:          

𝔼(𝜇𝑡) = 0,    𝔼(𝜇𝑡
2) = 1,    𝔼(𝜇𝑡

3) = 1, respectively.  

The specific form of the transformation applied on the residuals 

distinguishes the ‘wild’ from ‘Rademacher’ scheme. The commonly 

used choice in the literature is the distribution suggested by Mammen 

(1993) which takes the form; 

Wild:    𝜇𝑡 = {
−(√5 − 1)/2,     with prob    𝑝 = (√5 + 1)/(2√5)

(√5 + 1)/2,     with prob    𝑝 = (√5 − 1)/(2√5)
 (9) 

The more popular and simpler transformation which is common in the 

econometric literature is to use the Rademacher distribution suggested 

by Liu et al. (1988) thus;  

Rademacher:    𝜇𝑡 = {
1,     with prob    𝑝 = 1/2
−1,     with prob    𝑝 = 1/2

 (10) 

Another possible variant of the ‘wild’ bootstrap technique is to transform 

the empirical residuals to their absolute values and draw randomly from 

the absolute values. Davidson and Flachaire (2008) have shown that the 

Rademacher distribution is the best of many alternative wild bootstrap 

methods. Our results do not necessarily confirm this when compared to 

Hansen’s fixed regressor scheme. 

4.3  Results from experiments 

The results for the replication exercise of Hansen (2000) including our 

additional experiments are presented in Table 1. The columns with title 

“H” are the replications from the Hansen paper; whereas, the column 
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with title “C” are the replications from our paper. Overall, we are able to 

closely replicate Hansen’s results on the size distortions that exists when 

Andrews tables are used for inference. The differences observed are only 

marginal and could be explained by the different pseudo-random number 

generator techniques of GAUSS (the programming software used by 

Hansen) and Matlab (the programming software used in this study). The 

results from the additional experiments conducted reveals that the 

performance of the fixed-regressor bootstrap dominates the other three 

bootstrap techniques considered (i.e., Seive, Wild, and Rademacher). 

The exceptions only occur in a handful of models and are not 

generalizable. For example, we notice that with heteroscedastic errors, 

the wild bootstrap technique does a better job mimicking the distribution 

of stochastic mean and stochastic variance regressors. Similarly, in the 

world of iid errors, the sieve bootstrap technique dominates the fixed 

regressor bootstrap technique when there is a mean break in the 

regressors. 

The fixed regressor bootstrap technique of Hansen is, however, limited 

as it does not solve the inference problem in all the seven models of the 

regressors considered. Further, it does not account for the possibility of 

more than one structural break in the marginal distribution. There is also 

evidence that the fixed regressor bootstrap approach is not robust to the 

extreme breakpoint problem. Some of these shortcomings including 

more recent approaches are discussed in the more recent literature (see 

Boldea & Hall, 2013). 

Table 1: Nominal size test at 10% for small sample size 

 

 
The rejection frequencies are a percentage of 5000 replications from 10,000 bootstrap 

repetitions. 

 Model for 

Regressors 
IID  Mean 

Break 

Variance 

Break 

Mean 

Trend 

Variance 

Trend 

Stochastic 

Mean 

Stochastic 

Variance 

Homoscedastic 

errors 

H C H C H C H C H C H C H C 

Asymptotic 

distribution 

16 18.7 21 21.3 21 20.68 19 18.86 18 18.94 22 24.1 21 20.6 

Homoscedastic 

bootstrap 

12 13.94 14 14.02 14 14.94 13 13.38 12 13.56 15 17.6 15 14.08 

Heteroscedastic 

bootstrap 

10 10.6 9 8.54 7 9.68 10 10.02 9 10.1 10 10.9 10 10.22 

Sieve Bootstrap  10.84  10.86  11.34  11.44  11.26  14.1  10.8 

Wild Bootstrap  6.78  5.25  5.14  6.92  6.74  7.4  5.16 

Rademacher 

Bootstrap 

 13.7  12.32  12.52  13.3  13.26  17  12.96 

               

Heteroscedastic 

errors 

              

Asymptotic 

distribution 

21 24.56 43 54.82 71 64.16 22 20.16 18 18 40 40.36 50 48.6 

Homoscedastic 

bootstrap 

14 15.7 33 43.03 64 55.14 15 14.26 12 12.3 31 31.84 42 39.2 

Heteroscedastic 

bootstrap 

10 9.16 19 24.68 34 35.1 11 11.16 8 8.9 20 22.02 23 25.1 

Sieve Bootstrap  14.72  35.94  43.84  13.38  12.2  29.02  31.4 

Wild Bootstrap  6.26  10.64  19.78  9.22  8.3  15.44  15.7 

Rademacher 

Bootstrap 

 13.82  17.2  23.78  14.3  12.5  22.24  21.5 
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4.4  Empirical application: The stability and persistence of the 

Phillips curve in Nigeria 

Central banks constantly strive to correctly forecast inflation dynamics 

to help inform policy directions. This effort has been supported by the 

recent theoretical advances in modelling short-term inflation using 

micro-founded optimisation techniques which have culminated in the 

so-called New Keynesian Phillips curve (NKPC) and various hybrid 

versions (see Gali, 2009, for a classic introduction). The NKPC 

postulates that inflation at time 𝑡 is a function of expected inflation at 

time 𝑡 + 1 and the current output slack. The problem, however, is that 

in many industrialized economy, the NKPC has not performed well 

when confronted with data (see, Rudd and Whelan (2007) for a critical 

review of this literature). One major criticism of these class of models is 

that there are underidentified when estimated by GMM which leads to 

possibly spurious outcomes (see Khalaf & Kichian, 2003; Musso, 

Stracca, & Van Dijk, 2009). 

Because of the shortcomings of the NKPC, central bankers and 

forecaster still find it useful to resort to the reduced form Philips curve, 

which is entirely backward looking. That is a statistical specification that 

forecasts current inflation as a function of past inflation rates and the 

output gap. The usefulness of this approach will depend on its ability to 

overcome the Lucas (1976) critique. That is, to recognise if there have 

been changes in the parameters of the model, and to identify when these 

changes occur. The literature shows that they have been substantial 

changes in the dynamics of inflation in most advanced economies in the 

last four decades (see Musso et al. (2009), Cecchetti, Hooper, Kasman, 

Schoenholtz, and Watson (2007)). The changes have occurred in the 

form of shifts in the curve, changes in the degree of inflation persistence, 

and the steepness of the Philips curve. In addition to potential instability, 

some studies have also pointed to some forms of nonlinearities (for 

examples Laxton, Rose, and Tambakis (1999) and Musso et al. (2009)). 

The stability and persistence of the Philips curve for a resource 

dependent economy are particularly important because changes in 

resource prices may also contribute to the instability of the inflation 

process. Therefore, we focus on the stability and persistence of inflation 

dynamics in Nigeria given that domestic macroeconomic fluctuations are 

mostly driven by inflation and the impact of global commodity prices. 
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Further, the inflation dynamics in the country may have been affected by 

several factors such as the many military takeovers of government, 

IMF-induced structural adjustments programmes, liberalisation and 

transition to a rule based monetary policy framework, and the more 

recent global financial crisis. 

The objective of this empirical analysis is to use the 𝑆𝑢𝑝𝐹, 𝐴𝑣𝑔𝐹 and 

𝐸𝑥𝑝𝐹 tests with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 from Hansen’s fixed regressor bootstrap 

to empirically investigate the stability of the Philips curve for Nigerian 

over time. Specifically, we address the issue of stability in the 

relationship between inflation and economic activity by accounting for 

the possibility of structural change in the mean of inflation, the 

persistence of inflation, and slope of the Philips curve for Nigerian. For 

additional robustness, we use Bai and Perron’s (1998) methodology to 

test for the possibility of multiple structural breaks in the relationship.
9
 

4.5  Model and data 

The hybrid New Keynesian Philips curve, which assumes forward and 

backward-looking behaviour of firms, is specified as follows:  

 

𝜋𝑡 = 𝛾𝑓𝔼𝑡𝜋𝑡+1 + 𝛾𝑏𝜋𝑡−1 + 𝜆𝑚𝑐𝑡 + 𝜀𝑡, (11) 

 

where the coefficients are functions of the underlying parameters from 

the optimisation process thus, 

 

𝛾𝑓 ≡ 𝜃𝛽𝜙−1  (12) 

𝛾𝑏 ≡ 𝜔𝜙−1  (13) 

𝜆 ≡ (1 − 𝛽𝜃)(1 − 𝜔(1 − 𝜃)𝜙−1 (14) 

𝜙 ≡ 𝜃 + 𝜔[1 − 𝜃(1 − 𝛽)], (15) 

 

where 𝜋  is inflation rate, 𝑚𝑐  is the marginal cost and the deep 

parameters are derived from a general equilibrium optimization 

framework.
10

 For the purpose of empirical estimation, we switch off the 

forward looking expectations component of the model, i.e. we set 

𝛾𝑓 = 0, and plug in the measure of economic slack, which is the output 

                                                 
9 The Bai and Perron’s approach used here is not based on the Double maximum statistic (UDmax and 

WDmax). For the sake of word limit constraints, we are not able to report any aspects of that analysis here. 
10 We have decided not to discuss the implication of the parameters here since it is not the primary focus of 
the exercise 
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gap, in place of the marginal cost. The general form of the estimating 

equation then becomes 

  

𝜋𝑡 = 𝛼 + 𝜌𝜋𝑡−1 + ∑  𝑝
𝑗=1 Φ𝑗Δ𝜋𝑡−𝑗 + 𝛾𝑥𝑡 + ∑  𝑘

𝑗=1 Λ𝑗Δ𝑥𝑡−𝑗 + 𝛿′𝑧𝑡 + 𝜀𝑡, (16) 

where 𝑥𝑡 is the output gap and 𝑧𝑡 is a vector of supply shocks. For 

simplicity, we are only interested in the coefficients on the first lag of 

inflation 𝜋𝑡  and the output gap 𝑥𝑡 . Hence, we switch off all the 

𝑡 − 2, . … 𝑗 lags of inflation and the output gap so that the reduced form 

of the Phillips curve becomes; 

𝜋𝑡 = 𝛼 + 𝜌𝜋𝑡−1 + 𝛾𝑥𝑡 + 𝜀𝑡, (17) 

where 𝛼  is the intercept term that is used to measure if there is 

structural change in the mean of inflation over time. Given that the 

long-run value of inflation in Eq. (16) is 𝛼/(1 − 𝜌), we follow the 

methodology in O'Reilly and Whelan (2005) and interpret the parameter 

𝜌 as the persistence of inflation. The coefficient on the output gap 𝛾 is 

used to test if there has been a change in the slope of the Philips curve in 

Nigeria. 

Quarterly data on GDP and inflation  are retrieved from the Statistical 

Bulletin of the Central Bank of Nigeria (CBN), online version. We 

measure the output gap using the Hodrick-Prescott filter, which 

decomposes GDP into the trend and cyclical components.   

5.0    Empirical results and discussion 

In this section, we briefly discuss the results from the estimation of the 

Philips curve for Nigeria and the test for structural change. Table 2 

presents the regression results for the estimation of the reduced form 

version of the Philips relation in Eq. 14 with the accompanying test for 

structural change presented in Table 3. Although this version of the 

model suffers from the omission of relevant variables, some insights 

could be gained from the results presented. First, in Table 3, we observe 

from the structural change test using the Quandt-Andrews optimal 

testing techniques that there was a break in the relationship, which 

occurred in 1999Q2. The estimation for the full sample, pre-break 

sub-sample, and post-break sub-sample in Table 2 indicates that the 

theoretically expected signs of the lag of inflation and the output gap 

hold. Particularly, we observe that there is a significant change in the 
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mean of inflation between the pre- and post-break dates (see constant 

terms in the sub-samples). Also, with the coefficient on the lag of 

inflation being 0.32, there is no evidence of inflation persistence in the 

simple version of the model. 

Turning to the test of structural change in Table 3, we report the supF, 

avgF, and expF statistics and their associated p-values using both the 

Andrews asymptotic tabulation and the fixed regressor bootstrap 

schemes of Hansen. Here, all the different p-values seem to agree at the 

5% level of significance that there was a structural change that occurred 

at date index 159 (1999Q2), hence the size distortion problems 

(over-rejection) associated with Andrews tabulation of critical values 

does not undermine inference in this model. However, this may be as a 

result of the fact that we have not accounted for the potential dynamics 

in the inflation process by including further lags of the variables. 

Table 2: Reduced form Phillips curve estimates 

 
*,**, *** indicates significance at the 10%, 5% and 1% levels respectively.    

 

Table 3: Test for structural change in the reduced form model 

 

  Full Sample  Pre-Break Sample  Post-Break Sample 

Variables Parameters S.e Parameters S.e Parameters S.e 

Constant 0.73845*** 0.19512 0.19527* 0.0857 4.10012*** 1.03 

 

  
 

0.32972*** 0.07074 0.52708*** 0.0683 -0.06165 0.19 

 

  
 

-0.00007 0.00003 0.00002 2E-05 -0.00005 0 

       

Sample size 197  158  39  
Sample 

Variance 0.0012  1.03  21.62  

R-squared 0.11  0.27  0.03  
 

 Test Statistic Andrews’ IID Bootstrap Hetero-corrected 

   p-values p-values p-value 

SupF 65.21 0.000 0.000 0.000 

AvgF 28.43 0.001 0.000 0.000 

ExpF 28.56 0.0108 0.001 0.000 

         

Full sample size    197 

Estimated break Date     159(1999Q2) 

Percentage of sample    0.8 

Bootstrap replications    1000 
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In estimating Eq. (14), we have invariably squeezed the potential 

dynamics of the inflation process into the error term, which means that 

the results in Table 2 may be spurious results. This is particularly so in 

the light of recent research, for examples, Zhang (2011), and O'Reilly 

and Whelan (2005) which show that unless we account for the 

appropriate dynamics of inflation it may not be possible to correctly 

model the true form of the Phillips curve. Consequently, we also 

estimate a richer and more robust form of the Phillips relation for 

Nigeria by including more lags of inflation and the output gap in the 

model as described by Eq. (13). The regression results for the full 

sample, pre-break sample, and post-break sample dates are presented in 

Table 4, and the results of the structural change test are presented in 

Table 5. 

Table 4: Dynamic OLS Estimates of Phillips curve for Nigeria 

 
*,**, *** indicates significance at the 10%, 5% and 1% levels respectively. 

The regression results suggest that there is persistence in the inflation 

variable; the full sample having a persistence value of 0.83 (i.e., the 

coefficient on 𝜋𝑡−1). The persistence is, however, not existent in the 

post-break sample. There is also evidence from the results that there has 

been a shift in the mean level of inflation, as the coefficient on the 

 Full Sample Pre-Break Sample Post-Break Sample 

 Variables Parameters s.e Parameters s.e Parameters s.e 

Constant  0.26047* 0.16511 0.11142 0.0866 

 

5.45016*** 2.16 

 

  
 

 0.83547** 0.08599  0.85647*** 0.0805 -0.32849 0.53 

 

  
 

-0.00002 0.00003 0 2E-05 -0.00007 0 

 

  
 

 -0.64324*** 0.08642  -0.49036*** 0.0989 0.21704 0.43 

 

  
 

 -0.55517*** 0.07994  -0.65290*** 0.0835 0.18734 0.32 

 

  
 

 -0.55476** 0.06315  -0.50456*** 0.0799 -0.11481 0.2 

 

  
 

0 0.00003 0.00003 2E-05 -0.00004 0 

 

  
 

-0.00001 0.00002 0 2E-05 -0.00006 0 

 

  
 

0.00006 0.00003 -0.00003 2E-05 0.00005 0 

             

Sample size 197  165  32  
Sample 

Variance 3.85  0.99  12.12  
R-squared 0.47  0.52  0.46  
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constant term is significantly different in the pre- and post-sample 

estimation periods. The output gap 𝑥𝑡, including the lagged differences 

in the output gap that are included to account for speeds of expansion 

and recessions, are not statistically significant in the model. 

Table 5: Test for structural change in Philips curve 

 
From the associated test of structural change results presented in Table 5, 

we observe that the 𝑠𝑢𝑝𝐹 test statistic indicates that there is a structural 

change in the relationship at index 166 (2000:Q4).  Note that the 

breakpoint occurred at an extreme sample point. Specifically, the 

breakpoint occurred at the 84
th

 percentile of the sample, veery close to 

the 85
th

 percentile which is the upper cut-off used in the checking for the 

breakpoint in the data. The 𝑠𝑢𝑝𝐹 test statistic is 59.81 with a 𝑝-value 

of 0.00 using Andrews critical value table. However, because of the 

previously highlighted size distortion problem of Andrews critical 

values, we apply Hansen’s solution by obtaining 𝑝-values from 1000 

replications of the homoscedastic and hetero-corrected fixed regressor 

bootstrap techniques. The significance of the 𝑠𝑢𝑝𝐹  statistic is 

confirmed by the IID boostrap scheme. Moreover, when we correct for 

heteroscedasticity, the 𝑝 -value for the 𝑠𝑢𝑝𝐹  statistic rises to 10.6 

percent,  hence significance disappears and we can not reject the null of 

no structural change in the model. The pattern of the results are similar 

for the 𝐸𝑥𝑝𝐹 test. Using Andrews’ tabulated values and IID bootstrap 

𝑝-values, we are able to reject the null of no structural break. Hoverver, 

when correction is made for heteroscedasticty, the 𝐸𝑥𝑝𝐹 test becomes 

insignificant even at the 10 percent nominal level. For the 𝐴𝑣𝑔𝐹 

statistic, all inference methods agree that the 𝐴𝑣𝑔𝐹  test statistic is 

insignificant at the 5% level of significance. 

 Test Statistic  Andrews’  IID Bootstrap  Hetero-corrected 

  p-values p-values p-value 

SupF 59.8162 0 0.001 0.106 

AvgF 13.3197 0.0759 0.058 0.128 

ExpF 25.2167 0 0.001 0.111 

Full sample size    197 

Estimated break date    166 (2000: Q4) 

Percentage of sample    0.84 

Bootstrap replications    1000 

 



142      Testing for the Stability and Persistence of the Phillips Curve for Nigeria 

                              Chuku, Atan and Obioesio 

 

5.1  Discussion 

One main policy implication of the findings is that it is possible for the 

central bank to push up aggregate demand to a certain limit without 

causing a significant increase in inflation, although this possibility 

depends on the level of the output gap. Methodologically, to the extent 

that the regression and structural change test results presented in Table 4 

and Table 5 are reasonable and based on the data used, we wish to state 

some caveats about the interpretation of the results. Firstly, because the 

estimated date of the breakpoint (166) in the structural change test is 

close to the extreme sample (only two data points away from 168), this 

indicates that the insignificant result when using the hetero-corrected 

bootstrap p-values may be distorted by the extreme sample problem. 

Secondly, given the submission by Diebold and Chen (1996) that the 

presence of high autoregressive parameters creates a different kind of 

problem for the Andrews asymptotic distribution, it is not obvious from 

our estimated model that the high persistence observed in the inflation 

rate (0.83) has been accounted for by the fixed regressor bootstrap of 

Hansen. Typically, the sieve bootstrap technique has been recommended 

for inference in the presence of high persistence in the AR(1) 

coefficients. 

In a series of papers, Bai and Perron (1998, 2004) show that the 

Andrews 𝑆𝑢𝑝𝐹  statistic has low power in the presence of multiple 

structural breaks. This study did not explore the possibility that there are 

multiple structural breaks in the Phillips curve for Nigeria, hence the 

results and conclusions in the empirical analysis may have been 

undermined by multiple structural breaks if they were present. Finally, 

there is evidence in the literature that in addition to the possibility of 

structural change in the parameters of the Phillips curve, there is also the 

case of non-linearities in the relation characterizing inflation and the 

output gap (see Musso et al., 2009). Nonlinearities and time-varying 

parameters are often difficult to distinguish in the Andrews type tests. 

Further, because we have not tested for instability in the individual 

parameters of the model, it is possible for instability in one coefficient to 

spuriously drive instability in other coefficients of the model. Until these 

issues are thoroughly addressed, the results presented in this study are at 

best indicative. 
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5.2   Conclusion 

In this study, we describe the problem of testing for structural change 

when the break date is unknown using the 𝑆𝑢𝑝𝐹, 𝐴𝑣𝑔𝐹, and 𝐸𝑥𝑝𝐹 

testing approaches of Andrews (1993), and  Andrews and Ploberger 

(1994). We review Hansen’s asymptotic distribution theory and replicate 

the simulation exercise which shows that Andrews’ type tests are not 

robust to the presence of nonstationarities in the marginal distribution of 

the regressors. We describe Hansen’s solution based on the so called 

fixed regressor bootstrap scheme and the hetero-corrected version which 

corrects, to a great extent, the size distortion in the critical values 

tabulated by Andrews. 

We replicate Hansen’s results as closely as possible and experiment with 

the seive, wild and Rademacher bootstrap schemes to examine if there is 

any systematic improvement achieved by these alternative bootstrap 

methods over Hansen’s approach. Finally, we demonstrate an empirical 

application of structural change test of Andrews type statistics with 

inference based on the bootstrap techniques of Hansen using the Phillips 

curve for Nigeria. We find that inference based on Hansen’s 

hetero-corrected bootstrap techniques supports the hypothesis of a 

structural break in the inflation dynamics for Nigeria, whereas, using 

Andrews tabulated values, we reject the null hypothesis of no structural 

change. 
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Appendix A: Collection of relevant theorems and assumptions  

 

 Theorem  The result that guarantees the asymptotic validity of 

the homoscedastic fixed regressor bootstrap is given thus: Given the 

asymptotic distributions under local departures from ℍ0  

 𝑠𝑢𝑝𝐹𝑛
𝑑
→ 𝑇(𝛿) 

if 𝑇(0) denote the null distribution. Then  

 𝑠𝑢𝑝𝐹𝑛(𝑏)[𝑝]𝑇(0)    and    𝑝𝑛
𝑑
→ 𝑝(𝛿) 

Corollary  Given the theorem above, then  

 ℍ0; 𝑝𝑛
𝑑
→ 𝒰[0,1] 

 The implication of this theorem is that the conditional function of 

the asymptotic distribution is close to the bootstrap distribution function 

if 𝑛 is sufficiently large. Under the corollary above, the null ℍ0; 𝑝𝑛 is 

asymptotically distributed 𝒰[0,1] which is pivotal, so that the nuisance 

parameter problem is solved for large samples [12, pp. 107]. For the 

heteroscedastic bootstrap case, the theorem and corollary above are 

much similar. Thus;  

Theorem 1: 

 𝑠𝑢𝑝𝐹𝑛
ℎ(𝑏)[𝑝]𝑇(0)    and    𝑝𝑛

ℎ

𝑑
→ 𝑝(𝛿) 

Corollary 1:  Given the theorem above, then  

 ℍ0; 𝑝𝑛
ℎ

𝑑
→ 𝒰[0,1] 

 


